Webinar: Wood Studs & Steel Studs - Who is to Decide?
Tuesday, November 17, 2020
12:00pm - 1:30pm

Webinar:
Southern California’s built environment includes many examples of both wood studs and steel studs can be utilized as cost-effective materials for multi-story bearing wall framing. So how do you decide if one of these options is best for your project? Join our panel of experts for a discussion of the benefits and challenges of wood and steel stud framing, covering both structural design and building envelope considerations.

Moderator:
Jeff Ellis, P.E., S.E., SECB
Director of Codes & Compliance
Simpson Strong-Tie

Jeff Ellis is the Director of Codes & Compliance for Simpson Strong-Tie. His 29 years of construction experience has included 18 years as Division of State Architect and 11 years as Director of Design Engineering for commercial, residential and forensic projects for more than 9 years prior to joining Simpson Strong-Tie. He currently serves on the U.S. GSA’s Technical Review Board, and as a manager on the National Code Council Evaluation Service (ICES) Board. He has been a member of California’s Seismic Safety Committee, member, chair of the ASI Committee on Framing Standards (IFC’s) Lateral Design Subcommittee for several years, and president of the Code-Formed Steel Engineers Institute (CFSI).

Speakers:
Michele Kam-Biron, S.E.
Former Vice President of Education for the American Wood Council
Michele Kam-Biron is a California licensed structural engineer and former Vice President of Education for the American Wood Council. Ms. Kam-Biron also has over 20 years of experience managing and designing a wide range of projects in the education and healthcare sectors, both new construction and renovation, and has been recognized with multiple awards. Ms. Kam-Biron graduated from Cal Poly, San Luis Obispo with a B.S. in Architectural Engineering (ASCE), she is a former Director for Structural Engineers Association of California (SEABC) and Past President for Structural Engineers Association of Southern California (SEASC). She currently volunteers her time on the National Council of Structural Engineers Association (NCSA) Basic Education, the ICC Professional Development Council Education Committee and is Past-Chair of American Society of Civil Engineers Structural Engineers Association (ASCE) SEI Wood Education Committee as well as Chair of the SEASC Women in Structural Engineering Committee.

Kirsten Zedlewski, P.E.
Structural Engineer Manager
Digital Building Components
Kirsten Zedlewski is registered structural engineer in California with over 14 years of structural engineering design and management experience. She is the Structural Engineer Manager for Digital Building Components in Phoenix, AZ. Kirsten has extensive experience with framing systems, walls, floors and roofs and modular components directly from coordinated 3D models using digital manufacturing. These panels and modules are built using cold-formed steel (CFS) framing and are used as the main structural system and as pre-fabricated elements to be incorporated in the building architecture. While designing structural engineering, Kirsten also is involved in the architectural design of many projects including her perspective on finishes and code requirements for fire and sound. Still based out of Southern California, Kirsten has led over 220 projects including an 80,000 sq ft project of multi-story CFS clad building dorm buildings and the CFS non-load bearing interior and exterior framing for a 150,000 sq ft hospital.

Carl Wettly, Architect
Principal
Carl Wettly Architects
Carl Wettly is a California licensed architect and Principal of Carl Wettly Architects. Carl has been the President of green building and sustainable design for the past 30 years. Carl received his Master’s in Architecture from Yale University and his Bachelor’s in Architecture from Cal Poly, San Luis Obispo. He currently serves as Director of Architecture and Planning for Rancho Lastrapa, Carl’s work focuses on energy efficient design and durable resilient construction; by leveraging natural systems into the design and implementation of a sustainable stormwater management systems, Two prominent projects include a 9,000 sq ft Water Conservation Education Center that was framed with CFS and incorporated computer-controlled climate appropriate design principles that use 60% less Title 24 Twenty-Compliance Standards, and a 1500 sq ft green house designed with CFS that could meet California’s earthquake design requirements for schools at 20% of the construction cost of a similar size green house built for Los Angeles Highschool.

Register

Firm registration link provided with multiple location logos