AISC 341-22 — DRAFT PUBLIC REVIEW COMMENTS: PROPOSED RESPONSES

Review Period: September 4, 2020 – October 16, 2020

		Line				Reviewer Final
		Number				Response (Enter
	Section of	of PR		Background/		"Resolved" or
Name of Reviewer	PR Draft	Draft	Comment	Rationale	Committee Response	"Unresolved")
Peter Maranian	C2	15	Add	The criterion, which may have	NONPERSUASIVE.	
(pjmaranian.se			"All critical sections at	been established by James	Requirements in AISC	
@gmail.com)			components of	Clerk Maxwell in 1865, was	Specifications for the design of	
			members shall be	formulated by Von Mises in	moment frame, braced frame	
			checked by the Von	1913. It has been in the	and shear wall systems	
			Mises Yield Criterion.	British specifications for	accounts for yielding of the	
			This shall include	decades but its absence in the	respective ductile elements of	
			verifying yielding can	AISC Specifications frankly	the system. Explicit research	
			occur if yielding is the	leaves an unnecessary void.	through finite element analysis	
			expected	[Ref. Dowling (2007), BS	and full-scale testing has been	
			performance."	449)]	performed to verify the von	
					mises yield criterion for each	
					system. Unless there is a	
					deviation from the	
					specifications, verifying von	
					mises stress for every element	
					could be an excessive task.	
Peter Maranian	C3	25		Moment Magnification in	NONPERSUASIVE. The	
(pjmaranian.se				columns is due to higher	AISC standards are not the right	
@gmail.com)				mode effect and can	place for this language. Higher	
				substantially increase the	mode effects are predominant	
				moments in columns such that	in tall structures for which	
			Add, "Where dynamic	column yielding may take	dynamic analysis is typically	
			Non-Linear Analysis	place. [Ref. Pauley and	required by the building code	
			is not used increased	Priestley (1992), Bondy	officials. Dynamic Analysis	
			moments due to the	(1996)]	with 90% mass participation	
			phenomena of	Pauley, T. and Preistley,	will consider moment	
			moment magnification	M.J.N., 1992, "Seismic	magnification due to higher	
			shall be included"	Design of Reinforced	modes.	

, , (, ,		
				Concrete and Masonry		
				Buildings".		
				Bondy, K.D., 1996, "A More		
				Rational Approach to		
				Capacity Design of Seismic		
				Moment Frame Columns."		
				Earthquake Engineering		
				Research Institute, Oakland,		
				California.		
Peter Maranian	C3	25	See	Consideration should be given	PERSUASIVE . Include the	
(pjmaranian.se			(background/rationale)	to checking major structures	following sentence in Section	
@gmail.com)			comments	for fatigue, primarily from	C2 – "The effects of fatigue due	
				wind, followed by major	to low-cycle loading shall be	
				earthquakes (MCE).	considered in the analysis and	
				Reference Partridge et	design of the members and its	
				al(2000), Kandvinde et als	connection."	
				(2018)		
				Partridge, J.E., Paterson,		
				S.R. and Richard, R.M.,		
				2000, "Low Cycle Fatigue		
				Tests and Fracture Analyses		
				of Bolted-Welded Seismic		
				Moment Frame		
				Connections." July; STESSA		
				2000, Third International		
				Conference, Montreal,		
				Canada.		
				Kanvinde, A; Maranian, P;		
				Joseph, L; Lubberts, J (2018).		
				"Fracture and Fatigue Design		
				of the Wilshire Grand		
				Tower", Engineering Journal,		
				the American Institute of Steel		
				Construction, Vol. 55, pp 181-		
				189.		
Peter Maranian	D1.1	17	Add, "Members,	There are many instances	NONPERSUASIVE: The	
(pjmaranian.se			including details	where significant yielding	reviewer is correct in that there	
@gmail.com)			associated with the	may not be able to occur.	are many instances where	
			members, shall be		significant yielding may not be	

	verified that they are	These	include but are not	able to occur. The ductility	
	able to perform in a	limited	l to the following:	requirements in these	
	ductile manner	(i)	Plane strain	Provisions address those	
	accounting for bi-axial		conditions	concerns.	
	and/or triaxial	(ii)	Bi-axial conditions		
	conditions		such that shear	The reviewer's rationale is the	
			yielding, required for	same as for his comment on	
			ductility, cannot	AISC 360 and the same	
			occur.	response is given here as it	
		(iii)	Tri-axial conditions	relates to applying the	
			again such that shear	Specification requirements.	
			yielding cannot occur.		
		(iv)	Regarding item (iii),	Plastic moment, $M_p = F_y Z_x$, has	
			the existence of	been reached in most of the	
			stiffeners at	conditions listed by the	
			maximum moment	commenter. Common holes,	
			could create tri-axial	stiffeners, loading conditions	
			condition limiting the	regularly can reach M_p so long	
			ability of the member	as the Specification provisions	
			to yield.	in their entirety are followed. It	
		(v)	The existence of	is worth recalling that M_p does	
			holes, notches, and	not include benefits of strain	
			the like causing stress	hardening and tests in many	
			concentration	cases exceed M_p at very small	
		(vi)	Low service	levels of deformation.	
			temperature reducing		
			fracture toughness	Other limit states are addressed	
		Re	ef. Dowling (1999),	in other Sections of the	
			Blodgett (1998):	Specification.	
		Blod	gett, O.W., 1998, "The		
		Effe	ects of Constraints on		
		Ducti	lity in Welded Beam to		
		Co	olumn Connections;		
		Interr	national Conference on		
		We	lded Construction in		
		Seisi	mic Areas", American		
		Wel	ding Society. October		
		19	998, Maui, Hawaii.		

January	y 4,	2021	{AISC 341-22 —	DRAFT PUE	3LIC REVIEW	/ COMMENTS:	: PROPOSED	RESPONSES
---------	------	------	----------------	-----------	--------------------	-------------	------------	-----------

Junuary 4, 2021 (7.13	0 341 22		LIC REVIEW CONTRIENTS:			
				Dowling, N. E., 1999,		
				"Mechanical Behavior of		
				Materials-Engineering		
				Methods for Deformation,		
				Fracture and Fatigue", 2nd		
				Edition., Prentice Hall.		
Peter Maranian	D1.2	43		This is to ensure that the	NONPERSUASIVE, the	
(pjmaranian.se				bracing system provides an	committee believes the current	
@gmail.com)				effective mechanism for	requirements are adequate to	
				stability. Refer to Maranian,	"ensure that the bracing system	
				Kern and Dhalwala (2012).	provides an effective	
				Also applicable to	mechanism for stability."	
				Intermediate and Special		
				Moment Frames.		
				Maranian, P., Kern, R.,		
				Dhalwala, A. (2012).		
				"Considerations on Buckling		
				and Lateral Bracing Issues		
			Add," Where bracing	With an Emphasis on Steel		
			is required, a	Moment Frames in Seismic		
			minimum of two	Areas". ASCE 6th Congress		
			braces shall be	on Forensic Engineering; San		
			provided"	Francisco CA, October 31 –		
				November 3, 2012.		
Peter Maranian	D1.2b	81	Add," Where bracing	Bracing not perpendicular to	NONPERSUASIVE the	
(pjmaranian.se			is required it shall be	the beam/ girder will tend to	committee believes the current	
@gmail.com)			orientated	adversely restrain the	requirements are adequate and	
			perpendicular to the	yielding of joint.	there is no need to require	
			longitudinal axis of	Refer to Maranian, Kern and	bracing perpendicular to the	
			the beam / girder."	Dhalwala (2012).	beam. Lateral bracing provided	
			Alternatively, a	Maranian, P., Kern, R.,	by floor diaphragms have	
			properly configured	Dhalwala, A. (2012).	provided bracing without	
			single brace designed	"Considerations on Buckling	negative results.	
			for ultimate tensile	and Lateral Bracing Issues		
			strength of the beam	With an Emphasis on Steel		
			flanges Will provide	Moment Frames in Seismic		
			acceptable	Areas". ASCE 6th Congress		
			performance.	on Forensic Engineering; San		

January 4, 2021 (AIS	0 341-22 -	DINALLEOD	LIC REVIEW CONTINIENTS.			
				Francisco CA, October 31 -		
				November 3, 2012.		
Peter Maranian	D1.4a(b)	138	Delete sentence	Applied moments are real	NONPERSUASIVE, the	
(pjmaranian.se			starting "It is	effects and thus should be	requirement states that they	
@gmail.com)			permitted"	included.	may be ignored "unless the	
					moment results from a load	
					applied to the column" thus the	
					Provisions recognize that they	
					are real effects.	
Peter Maranian	E1.2.	24		Although not part of this	The provisions in AISC 341 are	
(pjmaranian.se				Specification, it should be	developed in conjunction with	
@gmail.com)				verified that use of this	ASCE 7 to reflect the intended	
				Specification along with	behavior for each system,	
				ASCE 7 reasonably accurately	including the ordinary systems.	
				evaluates only minimal		
				inelastic deformation. Similar		
			See	for other ordinary systems		
			(rationale/background)	including cantilevers and		
			comment	braced frames.		
Peter Maranian	E1.6b.(d)	128			As noted in the Commentary to	
(pjmaranian.se					Section E1.6b, designing the	
@gmail.com)					panel zone using basic code	
					prescribed loads may result in	
					design where initial yielding of	
					the frame occurs in the panel	
				There is no engineering	zones. This is viewed as	
			User Note; delete "not	justification not to include	acceptable behavior due to the	
			including overstrength	overstrength when other	high ductility exhibited by	
		1.10	seismic load"	systems are required to do so.	panel zones.	
Peter Maranian	E1.6c	140	After (d), add (e) ; "			
(pjmaranian.se			Drift and stability		The increased rotation due to	
@gmail.com)			analysis shall account	Increased rotation due to PR	PR connections will be	
			for PR connection	connection will increase drift	considered for the 2028 code	
	Баа	1.47	performance."	and will reduce stability.		
reter Maranian	E2.2	14/		Although not part of this	I ne provisions in AISC 341 are	
(pjmaranian.se				Specification, it should be	aeveloped in conjunction with	
(gmail.com)				verified that use of this	ASCE / to reflect the intended	
			G	Specification along with	behavior for each system,	
1	1		See comment	ASCE / reasonably accurately	including the ordinary systems.	

				evaluates only limited		
				inelastic deformation. Similar		
				for other ordinary systems		
				including cantilevers and		
				braced frames.		
Peter Maranian	E3.4a.	287			The strong column / weak beam	
(pjmaranian.se					(SC/WB) provision is not	
@gmail.com)					intended to prevent the columns	
					from yielding, and nonlinear	
					response history analyses show	
					column yielding is possible	
					(due to things like higher mode	
					effects) as described in the	
				Moment Magnification in	Commentary to Section E3.4a.	
				columns is due to higher	The goal of the SC/WB	
				mode effect and can	provision is to create a	
				substantially increase the	condition where "columns are	
			Add, "Mpc shall	moments in columns such that	generally strong enough to	
			exceed moment	column yielding may take	force flexural yielding in beams	
			determined from	place. Also, Section 3.6(b)	in multiple levels of the frame."	
			analysis including the	does not test connections	Column axial force is	
			effect of moment	where column yielding	considered in the SC/WB	
			magnification.	occurs.	calculation in Equation E3-2.	
Peter Maranian	E3.4c.1(b	374			The analysis requirements for	
(pjmaranian.se)				ASCE 7 include consideration	
@gmail.com)					of Direction of Loading,	
					including simultaneous	
					orthogonal forces. AISC 341	
					Section E3 is limited to the	
			Add, "Out of plane		additional analysis	
			forces shall be		requirements for SMF, and out-	
			considered as	Significant out of plane forces	of-plane forces require no	
			additional to this	can occur simultaneously with	analysis requirements above	
Doton Mononic-	E2 10 1/b	274	requirement	in plane maximum demands	In Section A1, the score of	
(nimeranian	E3.4C.1(D	5/4		Plassa confirm AISC 260	AISC 241 states "All	
(pjinarailian.se				stiffness requirements still	AISC 541 States, All	
(wgman.com)				apply Consider adding a	Specification are applicable	
			Soo commont	apply. Consider adding a	uplass otherwise stated in these	
			See comment	statement to commutilis.	uniess otherwise stated in these	

					Provisions." With no	
					exemption noted here, the	
					requirements of AISC 360 shall	
					apply.	
Peter Maranian	E4.3b	738			In Section E4.3b, titled	
(pjmaranian.se					"Nonspecial Segment," a	
@gmail.com)					capacity design requirement for	
					the column is prescribed as	
					follows:	
					"The required strength of	
					nonspecial segment members	
					and connections, including	
					column members, shall be	
					determined using the capacity-	
					limited horizontal seismic load	
					effect. The capacity-limited	
					horizontal seismic load effect,	
					Ecl, shall be taken as the lateral	
					forces necessary to develop the	
					expected vertical shear strength	
				There should be an equation	of the special segment acting at	
				similar to equation (E3-1) to	mid-length and defined in	
				ensure the system provides for	Section E4.5c. Second-order	
				strong column weak Truss	effects at maximum design drift	
				Moment Frame? Ensure	shall be included." More	
				material strengths are	details regarding how to design	
				considered as well as moment	columns for the required	
				magnification (see comments	strength are given in the	
			See comments	above)	Commentary E4.3b.	
Peter Maranian	E4.4a	762	Add, "Out of plane	Significant out of plane		
(pjmaranian.se			forces shall be	forces can occur	The analysis requirements for	
@gmail.com)			considered in addition	simultaneously with in plane	ASCE 7 include consideration	
			to in plane demands"	maximum demands.	of Direction of Loading,	
				Also, recommend further	including simultaneous	
				testing on this system, beyond	orthogonal forces. AISC 341	
				that by Itani and Goel (1991)	Section E4 is limited to the	
				to verify performance with	additional analysis	
				both in plane and out of plane	requirements for SMF, and out-	
				force demands.	of-plane forces require no	

					analysis requirements above	
					those in ASCE 7.	
Peter Maranian	E5.3	852	Add, "Design of the		The analysis requirements for	
(pjmaranian.se			cantilever shall		ASCE 7 include consideration	
@gmail.com)			include out of plane		of Direction of Loading,	
			forces "		including simultaneous	
					orthogonal forces. AISC 341	
					Section E5 is limited to the	
				Simultaneously out of plane	additional analysis	
				forces with in plane forces can	requirements for OCCS, and	
				significantly affect the	out-of-plane forces require no	
				performance of the cantilever	analysis requirements above	
				and its connections	those in ASCE 7.	
Peter Maranian	E6.3	877	Add, "Design of the		The analysis requirements for	
(pjmaranian.se			cantilever shall		ASCE 7 include consideration	
@gmail.com)			include out of plane		of Direction of Loading,	
			forces		including simultaneous	
					orthogonal forces. AISC 341	
					Section E6 is limited to the	
				Simultaneously out of plane	additional analysis	
				forces with in plane forces can	requirements for SCCS, and	
				significantly affect the	out-of-plane forces require no	
				performance of the cantilever	analysis requirements above	
				and its connections	those in ASCE 7.	
Peter Maranian	F1.3	27	Add, "Design of the		The analysis requirements for	
(pjmaranian.se			braced Frames shall		ASCE 7 include consideration	
(@gmail.com)			include out of plane		of Direction of Loading,	
			forces		including simultaneous	
					orthogonal forces. AISC 341	
					Section F1 is limited to the	
				Simultaneously out of plane	additional analysis	
				significantly offect	out of plane forces require no	
				significantly affect	out-of-plane forces require no	
				frame and its connections	those in ASCE 7	
Potor Moronian	E2	124	See	Instity use of the system since	The Committee is aware of the	
(nimeronion so	1'2	124	(rationale/background)	it shows noor performance	results of this referenced test	
(pjinaraman.se @gmail.com)			(ranonaic/backgroullu)	when tested (Reference Uriz	program and has incorporated	
e ginan.com)			comment	and Mahin 2004)	revisions to the provisions to	
					revisions to the provisions to	

				Uriz, P and Manin,	address relevant issues (e.g., an	
				S.,(2004)"Seismic	emphasis on net section	
				Performance Assessment of	checks). Additional extensive	
				Concentrically Braced Steel	testing of SCBF by numerous	
				Frames". Proceedings of the	independent research programs	
				13Th World Conference on	has contributed to the	
				Earthquake Eng	development of the SCBF	
					seismic provisions proposed for	
					2022. The adequate	
					performance in testing justifies	
					inclusion of the system in AISC	
					341-22.	
Peter Maranian	F2.3	178	Add, "Design of the	Simultaneously out of plane	The analysis requirements for	
(pjmaranian.se			braced Frames to	forces with in plane forces can	ASCE 7 include consideration	
@gmail.com)			include out of plane	significantly affect	of Direction of Loading,	
			forces	performance of the braced	including simultaneous	
				frame and its connections	orthogonal forces. AISC 341	
					Section F2 is limited to the	
					additional analysis	
					requirements for SCBF, and	
					out-of-plane forces require no	
					analysis requirements above	
					those in ASCE 7.	
Peter Maranian	F2.6.6c.4	393			The Committee has considered	
(pjmaranian.se					numerous behavioral states in	
@gmail.com)					developing the Seismic	
					Provisions including	
					accommodation of brace	
			Add "Design of gusset		bucking, rotational capacity	
			plates shall consider		requirements for brace	
			frame rotational		connections, and requirements	
			affects including		for beam-to-column connection.	
			frame tendency to	Opening and closing of frame	It is the opinion of the	
			close when brace is in	can significantly affect gusset	Committee that these provisions	
			tension and frame	plates. Buckling, as well as	adequately address frame	
			tendency to open	occurring when the brace is in	performance requirements	
			when brace is in	compression can also occur	without incorporating the	
			compression."	when the brace is in tension.	recommended revisions	

Peter Maranian	F3.5b.4	579	Add, "The connection			
(pjmaranian.se	&F3.5b.5	&599	of the link to the		The method for evaluating	
@gmail.com)			diagonal brace shall be		complex stress interactions is	
8 /			checked for the		outside the scope of AISC 341.	
			complex stresses		While methods are discussed in	
			including flexural.		other AISC publications, such	
			shear and axial forces		as the AISC Steel Construction	
			utilizing Von Mises	See comment on C2 (line 15)	Manual, they will not be	
			Criterion".	above.	included in AISC 341.	
Peter Maranian	F4 3	764			The analysis requirements for	
(nimaranian.se	1 1,0	,			ASCE 7 include consideration	
(pjinarainanise @gmail.com)					of Direction of Loading	
e ginan.com)					including simultaneous	
					orthogonal forces AISC 341	
					Section F4 is limited to the	
				Simultaneously out of plane	additional analysis	
				forces with in plane forces can	requirements for BRBE and	
			Add "Design of	significantly affect	out-of-plane forces require no	
			BRBS to include out	performance of BPBE and	analysis requirements above	
			of plane forces "	their connections	those in ASCE 7	
Dotor Moronian	E5	042 1143	Soo	(i) There are no	The suggested additional	
(nimeronian so	15	942-1143	(rotionale/background)	(1) There are no requirements for the	requirements and	
(pjinaraman.se			(lationale/background)	stiffness of VBEs	requirements and	
@ginan.com)			comments.	and HPEs. There	approved for the 2028 and	
				allu HBES, There should be in order to	considered for the 2028 code	
				should be in order to	cycle.	
				control stress. The		
				performance should		
				consider wagner's		
				tension field theory		
				Labratan (1076)		
				Johnston (1976)		
				(11) I here are no		
				requirements or		
				guidance with regard		
				to HBES with web		
				plate above and		
				below and for VBEs		
				with web plate each		
				side regarding web		

				plate loading. This		
				should include		
				consideration of		
				unbalanced forces.		
				(iii) The analysis needs to		
				include performance		
				at various stages.		
				That is, elastic stage,		
				the yielding stage		
				and partial buckling.		
				Different parts of the		
				shear wall system in		
				a multi-story		
				building will perform		
				differently.		
				The system needs to verified		
				to ensure that the secondary		
				stresses due to gravity and		
				overturning forces do not		
				adversely affect the steel plate		
				system.		
Peter Maranian	F5.3	988	Add, "Design of Steel	Simultaneously out of plane	The analysis requirements for	
(pjmaranian.se			Plate Shear Walls to	forces with in plane forces can	ASCE 7 include consideration	
@gmail.com)			include out of plane	significantly affect	of Direction of Loading,	
			forces."	performance of the steel plate	including simultaneous	
				shear wall frame and its	orthogonal forces. AISC 341	
				connections	Section F5 is limited to the	
					additional analysis	
					requirements for SPSW, and	
					out-of-plane forces require no	
					analysis requirements above	
	12.2	5 0.02	9	*** 1 1 1	those in ASCE /.	
Peter Maranian	12.3	59-93	See comments	Welding procedures and	These suggestions will be	
(pjmaranian.se				fracture toughness	considered for the 2028 cycle of	
@gmail.com)				requirements need to better	the standard.	
				address size effects. Refer to		
				Blodgett (1998), Burdekin (1000), Tradict (2001)		
				(1999), 1 sai et al (2001),		
				Miller (1993)		

				Thus, procedures need to be		
				established to address		
				required fracture toughness to		
				account for size effects.		
				Blodgett, O.W., 1998, "The		
				Effects of Constraints on		
				Ductility in Welded Beam to		
				Column Connections:		
				International Conference on		
				Welded Construction in		
				Seismic Areas", American		
				Welding Society, October		
				1998 Maui Hawaii		
				Burdekin M (1999) "Why		
				Size Matters in Large		
				Structures". Gold Medal		
				Lecture. The Structural		
				Engineer, The Institution of		
				Structural Engineers, Vol.		
				77/No. 20, London, United		
				Kingdom.		
				Tsai, C., Kim, D., Jaeger, J.,		
				Shim, Y., Feng, Z. and		
				Papritan, J., 2001. "Design		
				Analysis for Welding of		
				Heavy W Shapes", The		
				American Welding Society,		
				The Welding Journal,		
				February.		
				Miller, D.K., 1993, "The		
				Challenge of Welding Jumbo		
				Shapes Part 1: The AISC		
				Specifications". The Welding		
				Innovation Quarterly, Volume		
				X, No. 1.		
Peter Maranian	K1.3	38-48	Add "Column to beam	Significant drag loads can	It is not practical to require all	
(pjmaranian.se			tests shall also be	occur and also column	beam-to-column subassemblage	
@gmail.com)			carried out with axial	yielding may occur due to	testing to exactly replicate all	

••••••••••••••••••••••••••••••••••••••						
			loads acting on the	moment magnification,	aspects of a real building	
			beams and also	Pauley and Priestley (1992),	including column axial force,	
			allowing column	Bondy (1996).	beam axial force, beam restraint	
			yielding to occur prior	Pauley, T. and Preistley,	from a composite slab, and	
			to beam yielding"	M.J.N., 1992, "Seismic	column boundary conditions.	
				Design of Reinforced	Testing under conditions that	
				Concrete and Masonry	are as close as possible to those	
				Buildings".	found a real building are	
				Bondy, K.D., 1996, "A More	recommended in the	
				Rational Approach to	commentary.	
				Capacity Design of Seismic		
				Moment Frame Columns."		
				Earthquake Engineering		
				Research Institute, Oakland,		
				California.		
Peter Maranian	K1.3	38-48	Consideration should	Reference, Maranian and		
(pjmaranian.se			be given for small	Dhalwala (2019), Mazzolani	High strain rates increase the	
@gmail.com)			component testing to	(2000). Thrust fault	steel yield strength and the	
			check for dynamic	earthquakes occur in Southern	ultimate tensile stress. The	
			effects causing	California that can cause	increase in Fu is generally less	
			significant strain rates	significant vertical and	than that on Fy, which may lead	
			in regions where high	horizontal accelerations and	to more critical conditions than	
			strain rates can occur.	result in high strain rates that	predictions based on static	
			See comments.	can appreciably effect fracture	material properties when	
				toughness due to the	verifying a hierarchy of failure	
				phenomena causing shift in	modes. Ductility also tends to	
				the nil ductility and shift of	reduce under high strain rates.	
				the DBTT curve thus reducing	If a qualification test on a new	
				fracture toughness.	connection is to be performed	
				Maranian, P and Dhalwala A;	using quasi-static cyclic tests, it	
				2019, "Considerations	would be appropriate to require	
				regarding the Repair &	that components whose strength	
				Retrofit of Existing Welded	and ductility can be sensitive to	
				Moment Frame Buildings",	strain rate effects be verified	
				the Structural Engineers of	individually by means of real-	
				California Convention.	time component testing.	
				Mazzolani F., (2000),		
				Moment Resisting	Therefore, Section K1.3 will	
				Connections of Steel Frames	add the following requirement:	

				in Seismic Areas", includes	"The behavior of components	
				"Influence of the type of	whose strength and ductility are	
				Seismic Ground Motions",	sensitive to strain rate effects	
				Gioncu,V; Mateescu, G;	shall be verified by means of	
				Tirca, L: Anastasiadis, A.	real-time component testing."	
				CRS Press.		
Peter Maranian		129	Add" The report shall	Uncontrolled buckling can be	Section K1.6 is describing	
(pjmaranian.se			include description of	detrimental to the	requirements for documenting	
@gmail.com)	K1.6.(b)		buckling modes."	performance.	pregualification, and Section	
0 /			5	It should be clarified how	K1.6(b) requires that the	
				uncontrolled actions are to	expected behavior of the	
				be accounted for. For	connection be described. This	
				example, uncontrolled local	is not describing the behavior	
				buckling of flanges and web	from a single test. Reporting of	
				of steel moment frame	results for a single qualification	
				connections with the	test is described in Section	
				potential to fracture due to	K2.7, which requires	
				low cycle fatigue. Ref.	documentation of test	
				Bertero and Popov (1967)	observations and failure modes.	
				Panel zone vielding should		
				not occur per panel zone		
				design requirements.		
				Bertero, V.V. and Popov.		
				E.P., 1967, "Effect of Large		
				Alternating Strains of Steel		
				Beams, Journal of the		
				Structural Division".		
				American Society of Civil		
				Engineers, February.		
Peter Maranian	K1.6.(b)		Add" The report shall	Panel zone yielding, if occurs,	Section K1.6 is describing	
(pjmaranian.se			include description of	may help towards attaining	requirements for documenting	
@gmail.com)			any panel zone	rotational requirements and	prequalification, and Section	
			vielding"	thus is not representative. For	K1.6(b) requires that the	
				example, whether or not panel	expected behavior of the	
				zones yield in a steel moment	connection be described. This	
				frame connection can	is not describing the behavior	
				significantly affect its	from a single test. Reporting of	
				performance. A beam with	results for a single qualification	
				upper bound strength	test is described in Section	

		connected to a column with a	K2.7, which requires	
		lower bound strength can	documentation of test	
		cause yielding in the panel	observations and failure modes.	
		zone whereas the opposite		
		may not.		